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This short article questions and investigates the possible range of values for the

three angles of a unit cell in the triclinic system. Although no constraints are

reported in manuals and tables for crystallography, the three angles are not

really independent; the range of allowed values is calculated and presented in

this paper.

1. Introduction

There is a broad, if not universal, acceptance by the community of

crystallographers that cell parameters in the triclinic system can

assume any arbitrary value. This is reported everywhere in textbooks,

tables and papers on crystallography. It is certainly true that the a, b

and c lengths of the cell can be given any value, and that they are

quantities independent of each other. The same, though, cannot be

stated for the angles; although each individual angle can assume any

value between 0 and 180�, they are not independent of each other.

This feature of the triclinic system is strongly related to the volume of

the unit cell; wrong combinations of angles can result in the volume

being zero or, even, an imaginary number.

In this short paper we will examine the whole issue quantitatively.

It will be readily shown that the determinant appearing in the

expression for the unit-cell volume is at the heart of the problem. A

factorized version of that expression will enable us to single out the

set of allowed values for the cell’s angles. Finally, a simple geometric

construction will help in clarifying the reason why the volume

expression can have a null or imaginary value.

2. The expression for the volume of a unit cell

Throughout the text we will adopt a right-handed coordinate system;

the main conclusions are identical if a left-handed system is chosen

instead. The easiest way to derive the equation for the volume of a

unit cell is through the triple product of its axes. This, in turn, is

equivalent to the determinant of the matrix whose rows are the cell

axis components (see, for instance, Giacovazzo et al., 2002, pp. 68–69,

or Woolfson, 1997, pp. 61–62),

V ¼ a � ½b� c� ¼ detðAÞ �

�����
ax ay az

bx by bz

cx cy cz

�����:

When cell lengths and cell angles are preferred to Cartesian

components, it is customary to square the volume. As the determi-

nant of a transpose matrix is equivalent to the determinant of the

matrix itself, we have

V2
¼ ½detðAÞ�2 ¼ detðAÞ detðAt

Þ ¼ detðAAt
Þ

¼

�����
a � a a � b a � c

b � a b � b b � c

c � a c � b c � c

�����

or

V2
¼ a2b2c2

�����
1 cos � cos�

cos � 1 cos�
cos � cos� 1

����� � a2b2c2P: ð1Þ

Equation (1) for the square of the volume is interesting as it makes it

immediately evident that cell lengths are independent of cell angles.

From the same expression it also appears that determinant P is of key

importance in the calculation of the unit-cell volume. In the mathe-

matical context of trihedral angles, its square root has been known as

the generalized sine of the trihedral angle (Allendoerfer, 1965; Nahir,

1998). It is supposed to be a positive quantity, otherwise the volume

will be zero or an imaginary number. Unfortunately, P could assume

null or negative values for certain combinations of angles. In fact, P

can assume any real value between �4 and 1. Therefore, we will have

to find the conditions on �, � and � that make P positive. The analytic

expression for P is

P ¼ 1� cos2 �� cos2 �� cos2 � þ 2 cos � cos� cos �: ð2Þ

Finding the conditions that make equation (2) positive can be quite

complicated. It is preferable to use an equivalent factorized form

(Allendoerfer, 1965; Sivardière, 1996),

P ¼ 4 sin
�þ �þ �

2

� �
sin

�þ �� �

2

� �
sin

�þ � � �

2

� �

� sin
�þ � � �

2

� �
: ð3Þ

This equation has also been reported in International Tables for

Crystallography (Donnay & Donnay, 1959; Koch, 2004), and it is

frequently used in computational programs for crystallography. A

demonstration of how equation (3) can be derived from equation (2)

is shown in Appendix A.



3. Determination of the allowed range for the unit-cell angles

It is straightforward to find out when P is positive if equation (3) is

used. Simply, the product of its factors will have to be positive. This

can happen if all factors have a positive sign, or if all have a negative

sign, or if two factors are positive and two are negative. We can limit

�, � and � to values in the range ½0; 180�, as numbers higher than

these correspond to a specular image of the same unit cell, better

described with a left-handed coordinate system. We will, therefore, be

looking to a region where P is positive, which is contained in the cube

with a vertex at ð0; 0; 0Þ and with side equal to 180. Each sine factor in

the expression will be positive or negative on either of the sides of a

specific plane. For example, sin½ð�þ �þ �Þ=2� will be positive above

the plane of equation

�þ �þ � ¼ 0

and below the plane of equation

�þ �þ � � 360 ¼ 0:

This intersects the cube in a closed, convex region; in this part of the

cube all combinations of the three angles will give a positive value for

the sine, in the complementary region of the cube to this the sine will

be negative. By considering all possible combinations of signs for

the sines and by inspecting, for each combination, which region

of the cube is positive and which is negative, we are able to

determine a convex region within which P is positive. This is the

interior of the tetrahedron depicted in Fig. 1, whose vertices have

coordinates A � ð0; 0; 0Þ, B � ð180; 0; 180Þ, C � ð0; 180; 180Þ and

D � ð180; 180; 0Þ.

As the volume of the tetrahedron is one third of the volume of the

cube, there are, in fact, going to be two times more combinations of

(�; �; �) giving a null or imaginary volume than those giving a

positive, admissible volume. From a purely quantitative point of view,

the three angles �, � and � will be valid unit-cell angles if they satisfy

at the same time the following four inequalities:

0 < �þ �þ � < 360;
0 < �þ �� � < 360;
0 < �� �þ � < 360;
0 < ��þ �þ � < 360:

8>><
>>:

ð4Þ

For example, a unit cell with angles 60, 60 and 130 cannot exist,

despite the fact that they numerically appear perfectly sensible values

for a triclinic cell. Fig. 1 also shows angle combinations corresponding

to those systems different from the triclinic. Point K � ð90; 90; 90Þ

corresponds to the orthorhombic, tetragonal and cubic systems,

point H � ð90; 90; 120Þ to the hexagonal one. The straight line going

from L � ð90; 0; 90Þ to L0 � ð90; 180; 90Þ corresponds to the mono-

clinic system, where the � angle can assume any value in the range

ð0; 180Þ. Finally, the straight line going from A � ð0; 0; 0Þ to

A0 � ð120; 120; 120Þ corresponds to the rhombohedral system, where

all three cell angles are equal to a single value between 0 and 120. It is

immediately obvious that all these points lie inside the tetrahedron,

as it should be.

4. A geometrically intuitive explanation for null and
imaginary volumes

In the previous section, quantitative arguments for unit-cell angle

constraints have been presented. It would be desirable to find a

qualitative or intuitive explanation of why there are constraints in the

first place. The following simple geometric construction should

provide the reader with such an explanation (Fig. 2).

Let � be the angle between axes a and b of the cell. The third axis,

c, will form an angle � with the b axis and an angle � with the a axis.

This means that c must lie at the same time on the surface of two

cones with vertices at the origin of the unit cell. The first has its axis

coincident with a and half-angle equal to �, while the second has its

axis coincident with b and half-angle equal to �. For certain combi-

nations of the three angles the two cones will intersect in two straight

lines starting from the origin and diverging specularly from the plane
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Figure 1
Each point inside this tetrahedron has coordinates ð�; �; �Þ which constitute
allowed values for the unit cell of a triclinic system. The extra lines and points
depicted inside the tetrahedron correspond to the angles of crystal systems
different from the triclinic (see text).

Figure 2
In this geometric construction, two of the three unit-cell axes, a and b, are the
central axes for two cones of half-angles � and �, respectively. When the cones
intersect in two straight lines, then two specularly equivalent unit cells are
constructed, and the third unit-cell axis, c, coincides with any of the two
intersections. If the cones’ apertures are progressively made to shrink, the two
intersections will get closer and closer, until they coincide with a single straight line
lying on the a–b plane; at this point the unit cell will have collapsed to a plane, and
its volume is null. Further shrinking will have the effect of making even that single
intersection disappear; in this case we have no unit cell and, consequently, its
volume is an imaginary number.



formed by a and b; in this case c coincides with any of the two straight

lines, and two specular unit cells will be constructed. When the cones’

half-angles shrink beyond a certain value, though, the two straight

lines will converge towards a single line on the a–b plane, and further

shrinking will result in no intersection at all. In the first case the unit-

cell volume will become zero, and the cell will degenerate into a

parallelogram; in the second case the volume will be imaginary and

no unit cell can be built.

5. Discussion

A unit cell describing a crystallographic structure must, quite

obviously, have a finite, not imaginary, volume. In this sense, Nature is

never going to be fooled by wrong combinations of angles, as they

only occur for null or imaginary volumes. Constraints [equation (4)]

are only useful in the context of a mathematical theory or a computer

algorithm. The authors were led to the investigations underlying this

paper when they tested their cRy package for statistical applications

in crystallography (Waterman et al., 2011) with unit-cell angles 60, 20,

80 (corresponding to a null volume) and found inconsistent, infinite

results. Their software now includes conditions [equation (4)] to

check against wrongly designed cells.

APPENDIX A
A factorized expression for the determinant P

Using the following trigonometric identity

cos2 � ¼ ½1þ cosð2�Þ�=2; ð5Þ

let us replace all squared cosines in equation (2). This yields

P ¼ �1=2� ½cosð2�Þ þ cosð2�Þ þ cosð2�Þ�=2þ 2 cos� cos � cos �:

ð6Þ

With another trigonometric identity, turning a sum into a product,

cos �þ cos� ¼ 2 cos½ð�þ �Þ=2� cos½ð�� �Þ=2�;

equation (6) is readily transformed into

P ¼ �½1� cosð2�Þ�=2� cosð�þ �Þ cosð�� �Þ þ 2 cos� cos� cos �

and, using again the identity [equation (5)],

P ¼ � cos2 � � cosð�þ �Þ cosð�� �Þ þ cosð�þ �Þ cos �

þ cosð�� �Þ cos �:

This last expression can easily be factorized as follows

P ¼ ½cos � � cosð�� �Þ�½cosð�þ �Þ � cos ��: ð7Þ

Equation (7) can be turned into the final factorized formula [equation

(3)] once the trigonometric identity

cos�� cos� ¼ �2 sin½ð�þ �Þ=2� sin½ð�� �Þ=2�

is applied to each of its factors.
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